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EXPANSION OF THE FOKKER-PIA" EQUATION 

IN SPHERICAL HARMONICS 

by Frederic A. Lyman 

Lewis Research Center 

SUMMARY 

The first two terms in the general spherical harmonics expansion of the 
FoWier-Planck equation are derived by a simplified method. Some remarks are 
made on the feasibility of obtaining the general term of the expansion. Errors 
in previously published results are pointed out. 

INTRODUCTION 

The Fokker-Planck equation is extensively used in the analysis of non- 
equilibrium phenomena in plasmas. The basic assumption underlying this equa- 
tion is that collisions which result in scattering through small angles are the 
most probable and therefore have the predominant effect on the distribution 
function. This assumption is well founded for electrically charged particles 
interacting according to an inverse-square force. 

If the validity of the Fokker-Planck equation is accepted, a difficult non- 
linear integro-partial differential equation for the distribution function still 
remains. The usual method of simplifying it involves the expansion of the dis- 
tribution function in spherical harmonics in velocity space. The result of 
this procedure is a system of coupled nonlinear integro-differential equations 
whose independent variables are the magnitude of the velocity and time. 

Rosenbluth, et al. (ref. 1) described the spherical harmonics expansion 
for the case of axial symmetry, but the resulting system of equations was not 
presented. In a subsequent paper (ref. Z ) ,  however, the equation for an iso- 
tropic distribution function, which is the zero-order equation of the system, 
was given. Dreicer (ref. 3) obtained the zero- and first-order equations of 
the system. Other authors (refs. 4 and 5) have also derived the zero- and 
first-order equations. These two equations usually suffice for most practical 
purposes, since the zero-order term in the spherical harmonics expansion gives 
the energy distribution of the particles, while the first-order term describes 
the manner in which the current is distributed over particles of various ener- 
gies. 

The Fokker-Planck equation for electrons may be combined with the usual 
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electric and magnetic field terms of the Boltzmann equation and the appropriate 
collision terms for elastic and inelastic interactions between electrons and 
molecules to yield a description of phenomena in a partially ionized gas 
(ref. 3). Even in a partially ionized gas, electron-electron collisions have a 
significant effect on the electron distribution function, except when the degree 
of ionization is extremely low. The inclusion of this effect entails consider- 
able analytical difficulty unless simplifications of the type described previ- 
ously can be made. Because of the importance of electron-electron collisions 
in many situations, the correct formulation of the collision term is vital. 

Errors of a nontrivial nature were discovered by the present author in the 
results of references 3 to 5. Dreicer’s results (ref. 3) are the most nearly 
correct, but much more serious errors occur in references 4 and 5. The ana- 
lysis leading to these results is not simple, but it could not be included in 
detail in the previously cited papers because of space limitations. Therefore, 
it is worthwhile to present in full the derivation of the first two equations 
in the spherical harmonics expansion of the Fokker-Planck equation and to point 
out the errors in the results of references 3 to 5. Although the derivation 
follows the general outline of references 1 and 3, parts of the derivation 
presented herein are believed to be somewhat simpler than the analyses described 
in those references. 

FOKKER-PLANCX EQUATION 

The Fokker-Planck equation may be written (refs. 1 and 3) 

where F($,$,t) is the distribution function, which is defined such that Fd3v 
is the number of test particles in the element d3v in velocity space centered 
about the velocity 5. The components of v on a fixed system of rectangular 
Cartesian coordinate axes are denoted by v. (i = 1, 2, 3). Repeated subscripts 
imply summation. 

+ 

1 (Symbols are defined in appendix A.) 

Unfortunately, the terminoloa applied to the various kinetic equations is 
by no means universal. 
equation in this report, following the usage of references 1 and 3. 
equation (la) is simply the definition of (aF/at),, the rate of change of 
due to collisions. In the general case where there are spatial gradients and 
external forces acting on the test particles, expression (la) is equated to the 
total derivative following the motion of the test particles 

Equation (la) will be referred to as the Fokker-Planck 
Actually, 

F 

and equation (lb) is sometimes called the Boltzmann-Fokker-Planck equation. 

The vector (Avi) is the rate of change in the ith component of velocity of 
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Figure 1. - Orientat ions of velocities 
of test and f ie ld particles with re -  
spect t o  coordinate system. 

a test particle of velocity vi due to its simultaneous 
interaction with all other particles, which are called 
field particles. If the distribution function of the 
field particles is denoted by Ff, (Av,) is defined as 
(refs. 1 and 3) 

where o(g,X) is the differential cross section for 
scattering through the angle X, g is the relative speed, that is, 

( 3) 
+ +  

g = Iv - v'( 

Avi is the increment in velocity of a test particle 05 initial velocity 
due to a collision with a field particle of velocity v', and dR is the ele- 
ment of scattering solid angle. The velocity vectors 3, ? I ,  and g are 
shown in figure 1. The summation in equation (2) is carried out over all 
species of field particles. 

3 

The meaning of equation (2) becomes clearer if it 

is noted that zll Ff d3vr 4 og d R  is the instantaneous collision rate 

f 
--f of a test particle of velocity v with all of the field particles. The quan- 

tity (Avi) is frequently called the coefficient of dynamical friction, since 
it corresponds to the slowing down of the test particles along their direction 
of motion (ref. 6). Note also that (Av,) has units of velocity per unit time. 

The quantity (AviAv.) is defined similarly as 
J 

and is referred to as the dispersion coefficient, since only this term in the 
Fokker-Planck equation contributes to the spreading of a beam of test particles 
(ref. 6). 

The Fokker-Planck equation (eq. (la)) may be derived from the Boltzmann 
equation by means of an expansion of the kernel of the Boltzmann collision 
integral in powers of the velocity increments (ref. 6). The Fokker-Planck equa- 
tion is obtained when only terms through the second order in the velocity in- 
crements are retained. Thus the Fokker-Planck equation is valid when collisions 
resulting in small angle scattering are predominant. This is true for Coulomb 
interactions because of the long range nature of the inverse-square force. 
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The d i f f e r e n t i a l  cross sect ion f o r  Coulomb s c a t t e r i n g  is  the  familiar 
Rutherford cross sec t ion  

1 (ete.7 1 1 
d g , N  = 4 - 

m2 g4 s in4  X 
t f  2 

I n  t h i s  equation the.  subscr ipts  t and f r e f e r  t o  t h e  t e s t  and f i e l d  p a r t i -  
c les ,  respectively.  The reduced mass m i s  t f  

m m  
t f  m s  

t f  m t  + mf 

(Mks un i t s  a r e  used throughout t h i s  report .  
and ef a r e  measured i n  coulombs (e.g. ,  et = +Zte where Zt i s  the  
charge number and 
charge). 
by simply de le t ing  the  47(c0.) 

out by Rosenbluth, e t  a l .  ( r e f .  l), who showed t h a t  these quan t i t i e s  could be 
expressed by means of t he  following simple formulas: 

Thus t he  e l e c t r i c  charges et 

e = 1.602~10-~~ C i s  the  absolute value of the  e lec t ron  
A l l  t he  r e s u l t s  herein may be converted t o  cgs e l e c t r o s t a t i c  u n i t s  

The ca lcu la t ion  of (Avi) and (AviAvj) f o r  Coulomb co l l i s ions  w a s  carr ied 

3% 5 (mi) = 

b2Gt 
(AViAV.) 

= a J viav j 

where the  functions €$ and Gt, which a re  now general ly  known as  the  
Rosenbluth poten t ia l s ,  a r e  defined as2 

(7) 

'Dreicer's expression for CI (following eq. (4) of r e f .  3) erroneously has 
2 

(.:e$) 
re fer red  t o  i n  t h e  INTRODUCTION. 

i n  t h e  numerator. This r a the r  t r i v i a l  mistake i s  not one of t he  e r ro r s  

Dreicer 's  notat ion i s  used i n  equations (9)  t o  (11) t o  f a c i l i t a t e  com- 
2 

parison with h i s  f i n a l  r e su l t s .  H i s  de f in i t i on  of Kt and Gt d i f f e r s  from 
t h a t  of Rosenbluth, e t  al.  ( re f .  1) by the  presence of Ttf. Dreicer 's  equa- 
t i o n  f o r  
note 1, i n  addi t ion t o  incor rec t ly  having the  reduced mass instead of 
l a t t e r  e r r o r  a l s o  appears i n  reference 1. 

rtf (eq. (8) of re f .  3) contains t h e  same e r r o r  as noted i n  foot-  
m t .  The 
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f f 

f f 

and the velocity-independent factor I?,, is 

The quantity 
the dimensionless ratio 

%f, which is usually much larger than unity, is defined as 

At, = d 
b0 

where d is the Debye radius and bo the impact parameter for 90' scattering. 
When the charged species are in thermodynamic equilibrium at the temperature 
the Debye radius is given by (ref. 6, p. 21) 

T, 

2 
- =  kT 4 7 ~ ~ ~  d2 

where the summation is over all charged species. The average impact parameter 
for 90' scattering is (ref. 6, pp. 16 and 21) 

letefl 1 letefl 1 

2 since for thermodynamic equilibrium, mtf(g ) = 3kT, as may be easily verified 
by integrating g2 
Therefore, equation ( E )  becomes 

over Maxwellian distributions of field and test particles. 
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I I l l  1111 I I 

At, = 3kT 
47rE0 

letefl e 

0 

S 

By d i r e c t  d i f f e r e n t i a t i o n  of equations 
r e l a t ions  can be derived3 (refs. 1 and 3) 

f 

kT -J - 7 S 

:7r € 
0 

(9)  and (lo), the  following usefu l  

where Hf and Ht a r e  r e l a t ed  by the  f i rs t  i d e n t i t y  i n  equation ( 9 ) .  

With the  use of equations ( 7 )  and (8), t h e  Fokker-Planck equation 
(eq. ( l a ) )  f o r  Coulomb co l l i s ions  may be wr i t t en  i n  terms of t he  Rosenbluth po- 
t e n t i a l s  Ht and Gt as follows: 

Rosenbluth (ref. 1) and Dreicer ( r e f .  3) express equation (19)  i n  spher ica l  
coordinates without f u r t h e r  reduction. 
convenient t o  f i r s t  reduce equation (19)  t o  a simpler form. 
der ivat ives  of the  products leads t o  

For t h e  present purposes, it i s  more 
Expansion of t h e  

~~. . . 

3The f ac to r  rtf i s  missing from equations (sa) and (9c) of reference 3. 
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Substitution of equations (16) to (18) into equation ( 2 0 )  yields 

+ - +  a F a  "t - mf 1 a2F a2Gt (E) = 4.1 2 rtf~f(v)~(v) - q x m t  + mf Hf + 7 aviav. av. av 
cc J 1 j  

( 2 1 )  f f 

This form of the Fokker-Planck collision term is not new, since it was given by 
Longmire (ref. 7), for example. Equation (21) is converted to an equation in 
spherical coordinates most simply by first writing it in terms of general co- 
variant derivatives valid for any coordinate system and then specializing the 
result to spherical coordinates. 
The result, equation (B17), could be used as the starting point of a general 
spherical harmonic expansion of the Fokker-Planck equation. Because of the 
nonlinear form of the equation, however, the general term of the spherical 
harmonics expansion would be exceedingly cumbersome and not too useful for 
practical purposes. This report will therefore confine itself to the deriva- 
tion of only the first two terms of the spherical harmonics expansion, and for 
this limited purpose a much less cumbersome procedure will suffice. 

This procedure is carried out in appendix B. 

EXPANSION IN SPHERICAL HARMONICS AND THE LORFNTZ APPROXIMATION 

A considerable simplification of the Fokker-Planck equation is obtained if 
it is assumed that the distribution function is nearly spherically symmetric in 
velocity space. 
tric distribution Fo( v) (not necessarily Maxwellian) plus a small perturbation 
E(?); that is 

The distribution function is written as a spherically symme- 

F(?) = Fo(v) C E(?)  ( 2 2 )  

This is equivalent to retaining the first few terms in the general spherical 
harmonic expansion of F 

+ 
In general, Flm is a function of the position vector r in physical space and 
time, as well as v. This space and time dependence is understood in equa- 
tion (23) and all subsequent expressions. 
defined as (ref. 8, sec. 3.4) 

The surface harmonics YZm(@,q)) are 

where are the associated Legendre polynomials, defined as 

m 1 m d2tm(cos20 - 1) 
2 222! (d cos O)lCm 
P (cos 0) = - ( -  sin e) 



The angles 0 and cp are the polar and azimuthal angles, respectively, mea- 
sured with respect to an arbitrary but fixed orthogonal triad of unit vectors 
5 ,  j, k (fig. 1). Since Y 
plex conjugate, one way t o  ensure that F is real is to assume that 
F2,-m = (-l)m(F 2m ) * . 

A A ~  

= ( - l )mYTm where the asterisk denotes the com- 2,  -m 

Although the expansion of F (eq. (23)) is convenient for many purposes 
because of the orthogonality properties of the spherical harmonics, it still 
must be interpreted with reference to some set of axes, and this is sometimes 
inconvenient. It is often desirable to recast equation (23) in an invariant 
form, which is independent of the particular choice of axes. This was done by 
Johnston (ref. 9), who has shown that the expansion of 
lent to a single sum of contracted tensors of the form 

F (eq. (23)) is equiva- 

F(T) = 2 vi vi vi . . . 
1 2  . .. 

2 V 

is a tensor of order 2.  The general expression relating 2 where 

this tensor and the coefficients of equation (23) is given in reference 9. 
This somewhat complicated expression will not be required in the present report 
because only the first two terms (2 = 0, 1) of equation (23) will be considered. 
When these terms are written out explicitly by using the expressions for 
obtained from equations (24), 

Fili2.. . i 2 
FZm 

Ylm 

= & Foo(v) - sin Q{2 Re pl(v)] cos cp 

Equation (26) may be cast into the desired form 
3 

F(3) = Fo(v) I- $l(v) + . . . 
v 
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by making the  def in i t ions4  

When there  i s  r o t a t i o n a l  symmetry about t h e  polar  a x i s  
m = 0 

c, only the  terms 
for  i n  equation (23)  a r e  re ta ined  and t h e  expansion reduces t o  an ex- 
pansion i n  ordinary Legendre polynomials 

where 

( see  eq. (3.57) of r e f .  8).  I n  t h i s  case, t h e  vector s1 i s  directed along 
the  polar axis ,  as  i s  c l e a r  from equation (28b). 
ax i s  i s  t h e  d i r ec t ion  of t h e  force  on the  t e s t  pa r t i c l e s ,  f o r  example, an 
e l e c t r i c  f i e l d  or concentration gradient  (see ref .  10, pp. 404-408). I n  t h e  
presence of e l e c t r i c  and magnetic f i e l d s ,  however, there  i s  i n  general  no 
a x i a l  symmetry i n  ve loc i ty  space because, f o r  a r b i t r a r y  d i rec t ions  of 
E 
and the  d i rec t ion  of F (v) i s  unknown a p r io r i .  

For a x i a l  symmetry, t he  polar  

-+ --$ + + 
and B, t he  force  (E + I;f x B) i s  not ro t a t iona l ly  symmetric about any ax is  

-+1 

The Lorentz approximation ( see  re fs .  3 and 11) cons is t s  of r e t a in ing  only 
the  f i r s t  t w o  terms i n  equation ( 2 7 )  under t h e  assumptions t h a t .  

and t h a t  t h e  remaining terms a r e  of negl igible  importance. 
has pointed out, Fo 
s c a l a r  function S(v),  such as t h e  k ine t i c  energy, while t h e  average value of 
any vector quant i ty  of t he  form &(v)$, such as the  ve loc i ty  vector i t s e l f  or 
t h e  heat f l u x  vector,  depends only upon 
wr i t t en  out i n  equation ( 2 7 )  account f o r  higher order tensor  propert ies ,  such 
as the  nondiagonal elements of t h e  pressure tensor  or t h e  energy f l u x  tensor  
( r e f .  9) .  

A s  Johnston ( r e f .  9 )  
alone i s  needed t o  ca lcu la te  t he  average value of any 

;’. Terms of higher order than those 

The physical meaning of condition (31) can be establ ished as follows. The 
average d r i f t  ve loc i ty  of t h e  t e s t  p a r t i c l e s  i s  (ref. 9, eq. ( lob))  

%quations (28a) and (28b) d i f fe r  from equations (sa) and (9b) of r e fe r -  
ence 9 by numerical f ac to r s  because t h e  spher ica l  harmonics are defined d i f -  
f e r e n t l y  i n  reference 9. 
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The average random speed (v) is (ref. 9, eq. (loa)) 

Therefore, condition (31) implies that the magnitude of the drift velocity is 
much smaller? than the random speed. 

It should be emphasized that in the present analysis, as well as in the 
Fo(v) analyses of references 1 to 3, neither the spherically symmetric part 

of the distribution function of the test particles, nor the corresponding func- 
tion Furthermore, 

in the analysis, inasmuch as the summations over the various species f of the 
field particles include the case f = t, where the field and test particles are 
the same. In general, the Fokker-Planck equation is nonlinear due to the pres- 
ence of the self-collision terms. 

F;(v) for the field particles, is assumed to be Maxwellian. 

the effect of collisions among the test particles (self-collisions) is included 

On the other hand, some authors (refs. 12 and 13) linearize the Fokker- 
Planck equation by assuming that the distribution functions of both the test 
and field particles may be represented by a Maxwellian distribution plus a 
small perturbation. In the notation of this report, such an assumption cor- 
responds to taking Fo(v) and 
the rate of change of 
integro-differential equations for the perturbation terms, such as 
the notation of this report), are obtained in references 12 and 13 as a result 
of this assumption. Balescu (ref. 14) uses a somewhat different method of 
linearizing the Fokker-Planck equation. He assumes that the test particles do 
not interact among themselves but only with the field particles, which are 
assumed to be in thermal equilibrium and, therefore, have a Maxwellian distri- 
bution. In Balescu's linearization, the distribution function of the test 
particles is not assumed to be close to equilibrium, however. Neither of the 
aforementioned linearization methods is used herein, inasmuch as the present 
analysis is intended to include those cases where the distribution function, 
although it is nearly spherically symmetric, is not close to a Maxwellian dis- 
tribution, and self-collisions are important. 

FF(v) to be Maxwellian distributions, for which 
Fo(v) due to collisions vanishes. Linear ordinary 

3 ( v )  (in 

The simplified expansion metho3 to be used herein proceeds in the follow- 
ing manner, The Lorentz approximation (eq. (27)) is substituted into the 
Fokker-Planck equation (eq. (21) ), which is then reduced to two equations, 
describing the rates of change due to collisions of Fo and ?I, respectively. 
In order to do this, it is necessary to determine at least the first few terms 
of the expansions for the functions H and G in spherical harmonics. It 
turns out that it is rather easy to expand functions H and G in full. 
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Rosenbluth, e t  a l .  ( r e f .  11, d id  t h i s  previously f o r  t he  case of a x i a l  sym- 
metry. I n  the  next sect ion,  the  expansions of H and G i n  terms of general  
spherical  harmonics a r e  obtained by a method t h a t  i s  simpler than t h a t  of r e f e r -  
ence 1. 

EXPANSION OF FUNCTIONS H AND G 

The function 
over t he  d i s t r ibu t ion  function of t he  f i e l d  p a r t i c l e s  according t o  

€Lt.(G) defined i n  equation ( 9 )  involves the  in tegra t ion  of -1 
g 

s i n  8' dei dcp' ( 34) 

where the  angles 8' and cp' a re  shown i n  f igu re  1. I n  order t o  expand q, 
it i s  convenient t o  f i rs t  expand g- l  as follows ( re f .  8, p. 62, eq. (3.41): 

where 
v and v', as shown i n  f igure  1. The r e l a t i o n  between Ye ar$ t h e  angles 
e, cp, e', cp' measured i n  the  f ixed coordinate system ?, J ,  k i s  

v (v  ) i s  t h e  smaller ( l a r g e r )  of (v,v') and Y i s  the  angle between < >  --* + 

3 3  

( 3 6 )  cos Y = v * v' = cos e cos el + s i n  e s i n  el cos ( c p  - c p ~ )  
W' 

The addi t ion theorem f o r  spher ica l  harmonics ( r e f .  8, p. 68, eq. (3.62)) i s  
used t o  express Pz(cos r) as a function of 8, 'p, e', cp' 

2 

When equations ( 2 3 ) ,  (35) ,  and (37) are subs t i tu ted  i n t o  equation (34), it 
bee om'? s 
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Jv ' 

Because of the orthogonality property of the spherical harmonics (ref. 8, 
p. 65, eq. (3.55)) 

= 1 if 2 = 2' and is zero if 2 # 11), all terms in the m' (where 

and 2' summations are seen to vanish when m' # m and 2' # 2, while the 
terms for m' = m and 2' = 2 integrate to unity. The resulting expansion 
for Kt can be written 

62' 2 

where 
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Note t h a t  
i n t e g r a l  operator i n  v'. 

q(3) i s  r e l a t ed  t o  Ff(v',B,cp) by means of a one-dimensional l i n e a r  

The expansion of Gt($) i s  car r ied  out by f i rs t  expanding g i n  Legendre 
polynomials. Both s ides  of equation (35) a re  multiplied by 
g2 = v2 + (v ' )2  - 2 w '  cos y, yielding 

If t h e  recursion formula (ref. 8, p. 59, eq. ( 3 . 2 9 ) )  

( 2  + l)Pl+l - ( 2 2  + 1) cos I" P2 + 2Pl,1 = 0 (43) 

i s  used t o  eliminate 
terms i n  the  s e r i e s  i s  changed, t he  following expansion of g i s  immediately 
obtained5 

cos y P2 from equation (42) and the  numbering of the  

W 

2 =o 

Since v2 + ( v ' ) ~  and w' a re  unchanged by an interchange of v and v', 

can be wr i t ten  more simply as 
they can be replaced by (v< 2 + v>) 2 and v<v>, respect ively,  and equation (44) 

The argument used i n  der iving the  expansion f o r  i s  repeated for Gt with 
equation (45) replacing equation (35). The r e s u l t  can be wr i t ten  down immedi- 
a t e l y  

5This method of der iving the  Legendre polynomial expansion of g w a s  
suggested by W i l l i s  H. B r a u n  of Lewis. 
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where 

Note t h a t  G f ( 3 ) ,  l i k e  Hf($), i s  r e l a t ed  t o  Ff(v' ,B,q) by means of a one- 
dimensional l i n e a r  i n t e g r a l  operator i n  v'. Equations (40), (41), (46),  and 
(47)  represent  t h e  extensions of equations (40),  (41), (45), and (46) of r e f e r -  
ence 1 t o  general  spher ica l  harmonics.6 
r e s u l t s  become ident ica l .  I n  reference 1, t h e  expansions and G t  are 
derived by f i rs t  expanding g'l and g i n  three-dimensional Fourier i n t eg ra l s ,  
The subsequent in tegra t ions  i n  t h a t  paper involve in t eg ra l s  of products of 
Bessel functions. The present der ivat ion seems to be consid-erably simpler. I n  
reference 3 the  general  terms of the  expansions for % and Gt a r e  not given, 
so comparison i s  impossible. 

I n  t h e  case m = 0, the  two s e t s  of 

For subsequent purposes, only the  terms f o r  2 = 0 and 2 = 1 i n  the  ex- 
pansions of % and G t  (eqs. (40) and (46 ) )  a r e  required.  These terms may be 
wr i t ten  i n  a form exac t ly  analogous t o  equation ( 2 7 )  

iT 
G t (;) = Go(v) t + ;$v) 7 + . (49) 

Since Hf and Gf a r e  r e l a t e d  t o  Ff (v' ,B,cp) by l i n e a r  i n t e g r a l  operators i n  

v', it i s  c l ea r  t h a t  

t i v e l y ,  by t h e  same i n t e g r a l  operators, namely 

0 -1 +1 'l a re  r e l a t ed  t o  Ff and Ff, respec- HfO, G f J  and H 0 
f "  G* 

%n equation (40) of reference 1, a e ) ( v , p )  should be replaced by 
A(")(v,p) on the  l e f t  side; a similar change should be made i n  equation (41) .  

n 

14 



+,3 J" $i(v')dv' - 5v ( v')~$:( v' )dvf 3 (53) I*  v v 

Equations (52) and (53) agree with equations (16) and (17) of reference 3, when 
equation (17) is written in vector form and the incorrect upper limit co in 
the fi st term of that equation is replaced by v. No expressions for 
and 2 are given in reference 3. 

DERIVATION OF EQUATIONS FOR Fo AND ? 
41 Equation ( 2 1 )  will now be decomposed into equations for Fo and F . The 

distribution functions F and Ff of test and field particles, and the poten- 
tials Hf and Gt are written 

F(3) = Fo(v) -t- E($) 

Ff(=) = Ff(v) 0 + Ef(3) 

(22) 

(54) 

15 
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where in the spirit of the Lorentz approximation are considered 

to be small perturbations. When products of 5 ,  Ef, 7 ,  and 5 are neglected 
in comparison with the first powers of these quantities, the various terms in 
equation ( 2 1 )  become 

5 ,  E,, 7 ,  5 

Since all the quantities with superscript 0 are functions of v, the follow- 
ing reductions can be made in the derivative terms: 

Similar expressions are of course obtained for 

Vv 

H: and GZ. If the gradient 
is written in spherical coordinates, it follows immediately that 

Equation ( 6 2 )  is then used to show that 

Expressions such as equations (60) 
of Fo, Hg, and G t  in equations 

16 

and (61) 
58) and 

are substituted for the derivatives 
59), and use is made of equations 



(62) and (63). The results may be written 

If the quantities 5 ,  7 ,  [ are identified as the terms for 2 = 1 in the 
spherical harmonics expansion of 
( 2 7 ) ,  (48), and (49) that 

F, %, and C+., it follows from equations 

-+ E($) = +l F (v) . ; v 

The derivatives of 5 ,  3, [ with respect to v can 'be calculated immediately, 
since the unit vector v/v remains fixed in magnitude and direction as v 
changes but 8 and cp remain fixed. Thus, for example 

av v av 

The simplest method of calculating V: 5 and V'' [ is to note that, for 
v any function JI( v, 8, cp )  expandable in spherical surface harmonics as 

the Iaplacian is 

17 



2=0 m=-2 

But YZm satisfies the  equation ( ref .  15, p. 53, eq. ( 5 ) )  

hence, 

Then, because 5 can be  wr i t ten  (see eq. (26) )  

1 

it follows from equation (74) t h a t  

1 

The expression f o r  .", 5 

Ge.  t he  der ivat ives  of 17 and 5 i n t o  equations (64) and (65) y ie lds  after some 
rearrangement and cancel la t ion of terms 

i s  s i m i l a r  t o  equation (76) ,  with $1 replaced by 
4 

Subst i tut ion of equations (69),  (70),  and (76) and t h e i r  counterparts f o r  

18 
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When equations (57) ,  (77) ,  and (78)  a r e  subs t i tu ted  i n t o  equation ( 2 1 ) ,  t he  
Fokker-Planck equation can f i s a l l y  be decomposed i n t o  the  following two cmpo- 
nent equations f o r  Fo and F1: 

COMPARISON WITH OTHER WORK 

Equations (79) and (80) a re  not exac t ly  i n  t h e  form given by Dreicer 
(compare eqs.(18) and (19) of r e f .  3). 
t i a l  H by means of r e l a t i o n s  (17)  and (18). To compare t h e  r e s u l t s  obtained 
herein with Dreicer 's ,  it i s  n e c e s s a r y t o  do t h e  same thing. 

Dreicer evident ly  eliminated the  poten- 

From equation (17) 

19 



The expansions f o r  
equation (81), and t h e  Laplacian of Gf i s  calculated.  When equation (74) i s  
used and the coe f f i c i en t s  of on both s ides  of equation (81) a r e  equated, 
t h e  r e s u l t  i s  

% (eq. (40))  and f o r  Gf (eq. (46 ) )  a r e  subs t i tu ted  i n t o  

Yzm 

I n  pa r t i cu la r ,  

Equation (83) i s  subs t i tu ted  f o r  H: 
rangement, can be wr i t t en  as 

i n  equation (79),  which, after some rea r -  

f 

where 

Equation (85) i s  exac t ly  the  same as DTeicer's equation (18). It i s  not c l ea r  
why he chooses t o  eliminate Hf i n  favor of Gf,  s ince higher der ivat ives  a re  
obtained i n  t h i s  manner. 

I n  order t o  compare equation (80) with Dreicer 's  equation (19) ,  t he  follow- 
ing r e l a t i o n  must be used: 

which follows from equation (18). When t h e  expansions of Ff and Gf (eqs. 
(23)  and (46), respec t ive ly)  a re  subs t i tu ted  i n  equation (88), t h e  Laplacian 
operation performed on Gf 
f i n a l l y  the  coe f f i c i en t s  of 
each other; t he  following r e s u l t  i s  obtained: 

twice, with the  use of equation (74) each time, and 
Y l m  on each s ide  of equation (88) a re  s e t  equal t o  

20 



I n  pa r t i cu la r ,  t h e  r e l a t i o n s  t h a t  a r e  needed a re  

Equations (90) and (91) a r e  subs t i tu ted  fo r  @ and z1 i n  equation (80). 

Also, Ho and z1 a r e  eliminated by means of equations (83) and (84) .  After 

some manipulation, equation (80) becomes 

f f 

f f 

= c f 

which i s  i n  t h e  form of equation (19) of reference 3. 
equation (80) i s  more convenient than equation (92) ,  s ince the  l a t t e r  contains 
higher der iva t ives  of t h e  G functions.  

It would appear t h a t  

Comparison of equation (92 )  with Dre icer ' s  equation (19) discloses  two 
differences.  F i r s t ,  and more important, t h e  last  term i n  Dre icer ' s  equation, 
-( 4/v3)aGi/av, was not obtained herein.  
by a number of  d i f f e r e n t  methods and t h e  term i n  question w a s  unobtainable, it 
i s  believed t o  be incor rec t .  The second difference i s  evident ly  a misprint  i n  

the  term (1/2) ( a2Fo/av2) ( a2zi/av2) , where Dreicer has Fg instead of Fo. 

Since t h e  ca lcu la t ions  were checked 
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Shkarofsky (ref .  4 )  quotes Fokker-Planck c o l l i s i o n  t e r m s  s i m i l a r  t o  equa- 
t i o n s  (79)  and ( 8 0 ) ,  but special ized to t h e  case of electron-electron c o l l i -  
sions. A comparison of t h e  present r e s u l t s  with those of reference 4 i n  t h a t  
s p e c i a l  case showed exact agreement f o r  ( re f .  4, eq. (5b) ) ,  but 

wide differences i n  t h e  expression f o r  

Shkarofsky's equation (sa) i s  i n  f a c t  dimensionally incorrect ,  and the  term con- 
t a i n i n g  the  second der ivat ive of Fo i s  missing from it. 

(&+/at),, (ref. 4, eq. (Sa)).  

Final ly ,  some comments on an ear ly  paper by Cahn ( re f .  5) may be of i n t e r -  
est, because he apparently managed to obtain an electron-electron c o l l i s i o n  
term i n  a form t h a t  enabled him to in tegra te  t h e  Boltzmann equation and express 
t h e  d i s t r i b u t i o n  function by means of a s ingle  in tegra l .  If t h i s  r e s u l t  were 
correct ,  it would be qui te  s ign i f icant  due t o  i t s  simplicity;  however, it i s  
believed t h a t  Cahn's r e s u l t  i s  not correct. The reason has t o  do with t h e  way 
i n  which Cahn car r ied  out integrat ions over t h e  v e l o c i t i e s  v of t h e  f i e l d  
p a r t i c l e s .  
r e l a t i v e  speed - i s  quoted as v' - v. Actually t h i s  should be 
/v' - vi; otherwise, it i s  incorrect  i n  t h e  case where 
r e l a t i v e  speed must be posit ive.  The r e s u l t  of t h e  angular integrat ions i s  
therefore  d i f fe ren t ,  depending on whether v1 < v o r  v' > v. The in tegra t ion  
over v1 from 0 to 03 then breaks i n t o  two i n t e g r a l s  with d i f f e r e n t  in te -  
grands, one i n t e g r a l  from 0 t o  v and t h e  other  from v t o  03, as obtained 
i n  t h i s  report  (see eqs. (41) and ( 4 7 ) )  and references 1 and 3. Cahn has only 
one in tegra l ,  from 0 t o  03. For instance, t h e  following result i s  given i n  
reference 5 (p. 299):  

3 1  

I n  reference 5 (p. 298), the  lower l i m i t  of in tegra t ion  on t h e  

v1 < v, because t h e  

Jpo % vi@ Uoov dv 
3 

where Cahn's notation need not be explained i n  d e t a i l  here, except t o  note t h a t  
E i s  a constant r e l a t e d  t o  rtf, while uO0 involves the  d i s t r i b u t i o n  func- 
t i o n s  of t h e  f i e l d  and t e s t  p a r t i c l e s  and t h e i r  derivatives.  The r e s u l t  should 
be 

This difference i s  important, because Cahn's electron-electron c o l l i s i o n  term 
i s  t h e  divergence of t h e  vector Ji, and a number of ex t ra  terms would appear 
from t h e  d i f f e r e n t i a t i o n  of the  i n t e g r a l s  having var iable  limits. These ex t ra  
terms complicate the  r e s u l t  considerably, and there  i s  no longer a p o s s i b i l i t y  
of obtaining t h e  d i s t r i b u t i o n  function 
by Cahn. 

Fo by simple quadratures , as claimed 
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CONCLUDING REBWRKS 

The f i r s t  two terms i n  t h e  spherical  harmonics expansion of the  Fokker- 
Planck equation have been obtained. The r e s u l t s  a r e  nonlinear integro- 
d i f f e r e n t i a l  equations whose vaz-lables are the  speed v of the  t e s t  p a r t i c l e  
and the time t. Although nei ther  these r e s u l t s  nor the  general method of de- 
r i v i n g  them i s  e n t i r e l y  new, t h e  f a i r l y  complete and straightforward deriva- 
t i o n s  presented herein resolves  the e r r o r s  and differences t h a t  e x i s t  i n  previ-  
ously published r e s u l t s .  Although the  Fokker-Planck equation i s  the b e s t  pres- 
e n t l y  avai lable  means of including the  e f f e c t  of e lectron-electron in te rac t ions  
on the  d i s t r i b u t i o n  function, it i s  s t i l l  r a t h e r  i n t r a c t a b l e  to a l l  but numeri- 
c a l  means. A simpler e lectron-electron c o l l i s i o n  model, which would bear the  
same r e l a t i o n  t o  the  Fokker-Planck c o l l i s i o n  term as the Krook model does t o  
the Boltzmann c o l l i s i o n  i n t e g r a l ,  would be invaluable f o r  workers i n  the  f i e l d  
of plasma physics. 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, January 8, 1965. 
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SYMBOLS 

The mks system of u n i t s  i s  used throughout t h i s  repor t  

ith component of accelerat ion 

magnetic f i e l d  

m t  b f  

(mf - m t ) / 2 m f  

impact parameter for 90' scat ter ing,  eq. (14)  

Debye radius,  eq. (13) 

e l e c t r i c  f i e l d  

e lectron charge ( e  = 1.602~10'~~ C )  

e l e c t r i c  charge of f i e l d  p a r t i c l e ,  kZfe 

e l e c t r i c  charge of t e s t  par t ic le ,  +%e 

d is t r ibu t ion  function of t e s t  p a r t i c l e s  

d i s t r i b u t i o n  function of f i e l d  p a r t i c l e s  

Rosenbluth poten t ia l ,  defined i n  eq. (10) 

r e l a t i v e  speed of t e s t  and f i e l d  p a r t i c l e s ,  eq. (3) 

r e l a t i v e  veloci ty ,  v - v' 
conjugate of metric tensor,  eq. (B5) 

metric tensor  

Rosenbluth poten t ia l ,  defined i n  eq. ( 9 )  

Chr is tof fe l  symbol of second kind, eq. (B2)  

3 -  

imaginary par t  of 

u n i t  vectors along Cartesian coordinate axes 



I! 

Christoffel symbol of first kind, eq. (B3) 

Boltzmann constant, 1.3804~10~~~ J/% 

mass of field particle 

mass of test particle 

reduced mass, mtmf/(mt + mf) 

particle number density, m-3 

Legendre polynomial of order 2 

associated Legendre polynomial, defined by eq. (24%) 

real part of 

position vector 

arc length in velocity space 

temperature 

time 

general curvilinear coordinate in velocity space 

magnitude of velocity of test particle, (vivi)'l2 

magnitude of velocity of field particle, (v!v!)'/~ 
1 1  

velocity vector of test particle 

velocity of field particle 

drift velocity of test particles 

it' component of velocity of tes, particle 

increment in vi due to collision 

ith component of velocity of field particle 

larger of (v,v') 

smaller of (v,v') 

it' component of position vector --* r 

spherical harmonic function defined by eq. (24a) 



11l1ll11ll1ll111l1lll II I II I I I  I1 

charge number 

defined by eq. (11) 

angle between v and v' 

Kronecker deltas in Cartesian and general coordinates, respectively 

dielectric permittivity of vacuum, 8.854~10'~~ F/m 

perturbation in Gty eq. (56) 

perturbation in Hf, eq. (55) 

polar angle in velocity space 

defined by eq. (12) 

cos 8 

perturbation in F, eq. (22) 

4 --* 

perturbation in Ff, eq. (54) 

differential scattering cross section 

azimuthal angle in velocity space 

scattering angle in center of mass coordinates 

scattering solid angle 

average value 

gradient operator in velocity space 

Laplacian operator in velocity space 

Subscripts : 

C collision 

cc Coulomb c olli s i on 

ee electron-electron collision 

f field particle 

h,i,j,k 

S species s 

tensor indices of covariant vectors and tensors 
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t test particle 

J denotes covariant differentiation 

Superscripts : 

+ 

h 

tensor indices of contravariant vectors and tensors 

index denoting term in Legendre polynomial expansion 

indices denoting term in spherical harmonics expansion 

index denoting term in azimuthal angle expansion 

zero-order terms 

first-order terms 

complex con jugate 

vector 

unit vector 
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TRANSFORMATION OF T'HE FOKKER-PLANE EQUATION TO 

SPHERICAL COORDINATES 

In this appendix, equation (21) is transformed to the spherical coordi- 
nates (v,B,cp) in velocity space. 
complicated equation (19) in reference 1 for the special case of axial symmetry. 
Basically the same method is used, namely, transformation to a general curvi- 
linear coordinate system and the specialization of the result to spherical co- 
ordinates. Axial symmetry is not assumed, however. 

This transformation was performed on the more 

Let the general curvilinear coordinates be denoted as ul, u2, u3. First 
the term (a2F/aviavj), which was written as a Cartesian tensor in equation ( 2 1 ) ,  
will be transformed into a second-order covariant tensor. Since F is a 
scalar, the proper extension of ( a2F/aviav - )  to general coordinates is the sec- 
ond covariant derivative of F (ref. 16, p. 32, eq. (22.7)); that is, 

J 

where (ref. 16, p. 26) 

and 

are the Christoffel symbols of the second and first kinds, respectively. The 
quantities giJ are the elements of the metric tensor; that is, the element of 
distance ds between two points whose coordinates differ by dul, du2, du3 is 

and gij is the contravariant tensor conjugate to gijJ defined such that 

where $ is the Kronecker delta. 
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In Cartesian coordinates, ( aZGt/aviav .) is defined such that J 

a2Gt 
(Av.Av.) = 1 J  v, v, 

but, in general curvilinear coordinates, this must be written as a second-order 
contravariant tensor, because the velocity ui and velocity increment Aui 
are contravariant vectors. 
linear coordinates is 

Thus the proper extension of equation (B6) to curvi- 

where the nontensor subscript t on G should not be confused with the tensor 
indices h, i, j ,k. 

The term ( aF/avi) ( aHf/avi) in equation (21) can be transformed easily, 
since the first covariant derivative of F is simply 

and the quantity @vi) = &€$vi 
contravariant tensor, becomes 

defined in equation ( 7 ) ,  when written as a 

In general curvilinear coordinates, equation (21) becomes 

f 

For spherical coordinates the element of distance ds is given by 

where for convenience the coordinate 
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will be used in place of 0 ,  as in references 1 and 3. Hence, if 

= v, u2 f p, u3 cp 

it follows from equations (B4), (B5) ,  and (B11) that 

- - -  1 - v2(1 - 11-2) 
g33 - g33 (B14c) 

Equation (B14d), which is true f o r  any orthogonal coordinates, may be used to 
considerably simplify expressions (B2) and (B3) for the Christoffel symbols 
(see ref. 16, p. 28, Ex. 2). For spherical coordinates, it then follows from 
equations (BZ), (B3), and (B14) that 

v 
2 

1 - P  
{;2} = - 

I-1 
2 

{:2} = - {:3} = - {3?7} = 1 - I - 1  

(B15a) 

(B15c) 

(B15d) 

(B15e) 

all other Christoffel symbols being zero. Substitution of equations (B15) into 
equation (Bl) yields 

30 
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a2F 1 aF 
F,12 = F,21  = avalJ. - v all. 

(B16c) 

(B16d) 

(B16e) 

(B16f) 

are of course analogous to the Gt,ij The expressions for the components of 
formulas of equation (B16). 
tion (B10) results in 

Substituting equations (B14) and (B16) into equa- 
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Equation (B17) is the Fokker-Planck equation in spherical coordinates. It 
is possible to utilize it to obtain the general term in the spherical harmonics 
expansion of (aF/at) cc. 
stituting the following expansion in equation (B17): 

This expansion could in principle be obtained by sub- 

together with the analogous expansions for Ff, Hf, and Gf. The recurrence 
relations for the functions 
their derivatives and the products of their derivatives with the quantities 
p, (1 - p 2 ) l i 2 ,  and so forth, in terms of the functions YZm themselves. It 
would then be necessary to expand products of spherical harmonics as follows: 

YZm (ref. 17, p. 181) would be utilized to express 

where the constants Cz m 2 m z are related to the Clebsch-Gordon coefficients 

(ref. 17,p. 514). 
separate out the various terms in 
forward, the amount of calculation would be rather large, and the usefulness of 
the general term in the expansion would probably not justify the labor in ob- 
taining it. For this reason the present report is restricted to the first two 
terms ( 2  = 0,l) in the spherical harmonics expansion of the Fokker-Planck equa- 
tion. The nonlinearity of equation (B17) is responsible for the difficulty in 
working out the general term of the expansion. The expansion of a much simpler 
linear collision term appropriate for collisions with infinitely massive field 
particles (the so-called Lorentz model) has been carried out in reference 18. 
Reference 18 also contains the spherical harmonics expansion of the electric 
and magnetic field terms and the spatial gradient terms in the Boltzmann equa- 
tion. 

1 1 2 2 )  
Finally, the result would have to be rearranged so as to 

Y2m. Although the procedure is straight- 
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